產(chǎn)品目錄
蒸汽流量計(jì)
渦街流量計(jì)
孔板流量計(jì)
壓縮空氣流量計(jì)
氣體流量計(jì)
熱式氣體質(zhì)量流量計(jì)
旋進(jìn)旋渦流量計(jì)
金屬管浮子流量計(jì)
靶式流量計(jì)
電磁流量計(jì)
渦輪流量計(jì)
橢圓齒輪流量計(jì)
水流量計(jì)
液體流量計(jì)
超聲波流量計(jì)
磁翻板液位計(jì)
浮子液位計(jì)
浮球液位計(jì)
玻璃管液位計(jì)
雷達(dá)液位計(jì)
超聲波液位計(jì)
投入式液位計(jì)
壓力變送器
差壓變送器
液位變送器
溫度變送器
熱電偶
熱電阻
雙金屬溫度計(jì)
相關(guān)產(chǎn)品
聯(lián)系我們
聯(lián)系電話:15195518515
服務(wù)熱線:0517-86801009
公司傳真:0517-86801007
公司郵箱:1464856260@qq.com
公司地址:江蘇省金湖縣理士大道61號(hào)
二氧化碳流量表在供熱管網(wǎng)中的應(yīng)用及效果分析
摘要:通過(guò)實(shí)際管網(wǎng)平衡改造案例,詳細(xì)闡述了靜態(tài)二氧化碳流量表調(diào)試方法,*后通過(guò)對(duì)比二氧化碳流量表調(diào)試前后管網(wǎng)不平衡率、室溫等數(shù)據(jù),得出管網(wǎng)平衡改造不僅對(duì)水力失調(diào)改善效果明顯,而且對(duì)能源節(jié)約有著明顯的效果。
1 引言
近些年來(lái)隨著供熱區(qū)域內(nèi)建筑面積的不斷增加,供熱管網(wǎng)的系統(tǒng)半徑不斷增大,在運(yùn)行期由于各種因素的影響,使得管網(wǎng)出現(xiàn)實(shí)際流量與設(shè)計(jì)流量不一致的現(xiàn)象,即出現(xiàn)了水力失調(diào)。雖然在設(shè)計(jì)初期會(huì)考慮到水力失調(diào)帶來(lái)的影響,由于水力計(jì)算步驟較為復(fù)雜,會(huì)選擇一些型號(hào)較大的設(shè)備,如加大水泵揚(yáng)程,提高水泵的運(yùn)行頻率來(lái)彌補(bǔ)系統(tǒng)水力失調(diào)。這種“大流量”的措施,放在以前的小規(guī)模系統(tǒng),舒適度要求較低、能耗要求也較低的供熱管網(wǎng)循環(huán)系統(tǒng)中,還可以用。但是現(xiàn)在來(lái)看,系統(tǒng)規(guī)模不斷擴(kuò)大,高舒適性、低耗能性等要求被提出,因此尋求新的解決水力失調(diào)的方法迫在眉睫。據(jù)不完全統(tǒng)計(jì),選用較大型號(hào)設(shè)備,會(huì)增加供熱設(shè)備的系統(tǒng)投資20%以上,同時(shí)熱能和電能也有不同程度的增加,耗熱能增加15%以上,浪費(fèi)電能30%以上。
管網(wǎng)水力失調(diào)不僅造成能源的大量浪費(fèi),而且造成了各采暖建筑物之間的室內(nèi)溫度偏差較大,冷熱不均。因此,必須采取有效措施解決供熱管網(wǎng)水力失調(diào)問(wèn)題。筆者分析了某小區(qū)的供熱管網(wǎng)中存在的問(wèn)題,利用加裝二氧化碳流量表方法解決管網(wǎng)水力失調(diào)的現(xiàn)象,以實(shí)現(xiàn)節(jié)能的目的。
2 小區(qū)供熱管網(wǎng)系統(tǒng)現(xiàn)狀
某小區(qū)住宅樓建設(shè)于1996年,建筑結(jié)構(gòu)為磚混建筑,建筑面積為54931m2,共30棟住宅樓。2017年繳費(fèi)739戶,總采暖面積為47141m2。換熱站位于小區(qū)中部,板式換熱機(jī)組設(shè)計(jì)換熱面積為50000m2,循環(huán)泵額定功率為30kW,流量為200m³/h,揚(yáng)程為32m。庭院管網(wǎng)共分為2個(gè)支狀供回水環(huán)路,該小區(qū)供熱管網(wǎng)見(jiàn)圖1所示。
管網(wǎng)平衡改造前,2017~2018 年*寒期循環(huán)泵頻率為45HZ,實(shí)測(cè)總供水量為189m³/h,供水溫度為 55.4℃,回水溫度為47.1℃;換熱站總供水壓力0.37MPa,回水壓力為 0.27MPa;采暖期電指標(biāo)為1.221kW·h/m2。管網(wǎng)近端末端部分用戶*寒期室溫實(shí)測(cè)數(shù)據(jù)詳見(jiàn)表1。基于以上數(shù)據(jù)可以看出,該小區(qū)庭院管網(wǎng)采用“大流量、小溫差”的供熱運(yùn)行方式,同時(shí)熱用戶室溫存在近熱遠(yuǎn)冷現(xiàn)象,管網(wǎng)處于水力失調(diào)狀態(tài),耗電指標(biāo)偏大,節(jié)能改造潛力巨大。
3 二氧化碳流量表的選用及調(diào)試方案
3.1 二氧化碳流量表的選用
該小區(qū)建造年代較早,供熱系統(tǒng)未采用熱計(jì)量,因此供熱系統(tǒng)屬于定流量系統(tǒng)。在定流量系統(tǒng)中,運(yùn)行過(guò)程流量不發(fā)生改變,因此只會(huì)出現(xiàn)靜態(tài)水力失調(diào)。只需要使用靜態(tài)二氧化碳流量表平衡系統(tǒng)阻力,達(dá)到靜態(tài)水力平衡即可。2018年夏季,我公司在小區(qū)每個(gè)樓單元前,回水干管上KPF靜態(tài)水力二氧化碳流量表,共安裝88臺(tái)DN50二氧化碳流量表。為使系統(tǒng)在*大程度上達(dá)到靜態(tài)水力平衡,供熱前期即可用專用儀表進(jìn)行平衡調(diào)試。KPF靜態(tài)水力二氧化碳流量表有良好的流量調(diào)節(jié)特性及開(kāi)度鎖定記憶裝置,配合使用專用智能儀表可測(cè)量單體建筑的供熱流量。該閥門(mén)可實(shí)現(xiàn)系統(tǒng)平衡后、總流量增減時(shí),各支路、各用戶的流量同比例增減,同步傳至每一個(gè)末端裝置,可有效避免流量失衡、各個(gè)環(huán)路相互干擾造成的熱量浪費(fèi)。
3.2 二氧化碳流量表調(diào)試方案
目前國(guó)內(nèi)平衡調(diào)節(jié)的主要方法有溫差法、比例法和CCR法。結(jié)合公司選擇使用KPF二氧化碳流量表的現(xiàn)狀,現(xiàn)采用KPF 綜合
調(diào)節(jié)法。該方法是計(jì)算出每棟單體建筑的理論循環(huán)流量,通過(guò)安裝KPF二氧化碳流量表,利用其專用智能儀表標(biāo)定通過(guò)閥門(mén)的實(shí)際流量,調(diào)節(jié)閥門(mén)開(kāi)度,使實(shí)際流量趨近于理論流量,實(shí)現(xiàn)水力工況平衡。
3.2.1 計(jì)算理論流量
考慮到該小區(qū)建造年代較早,建造圍護(hù)保溫性較差,查閱《城市熱網(wǎng)設(shè)計(jì)規(guī)范》后選用40W/m²的采暖熱指標(biāo)進(jìn)行計(jì)算。
根據(jù)公式(1)和公式(2)計(jì)算出每個(gè)單元理論設(shè)計(jì)流量。使用二氧化碳流量表專用智能儀表,通過(guò)調(diào)整二氧化碳流量表開(kāi)度,使實(shí)際流量趨近于理論流量。
3.2.2 二氧化碳流量表調(diào)試
在庭院管網(wǎng)二氧化碳流量表調(diào)試中,采取“先近后遠(yuǎn)”的原則。*先利用專用智能儀表對(duì)管網(wǎng)近端二氧化碳流量表進(jìn)行流量調(diào)試,使其實(shí)際流量趨近于理論流量,這樣可以有效增大管網(wǎng)末端用戶的使用流量,防止末端流量不足的情況出現(xiàn);其次再依次進(jìn)行管網(wǎng)中端和末端二氧化碳流量表調(diào)節(jié),使整個(gè)環(huán)路水力工況達(dá)到平衡。在二氧化碳流量表調(diào)試過(guò)程中,需將每臺(tái)閥門(mén)的開(kāi)度設(shè)定值、實(shí)際流量值等數(shù)據(jù)進(jìn)行記錄和整理,并撰寫(xiě)二氧化碳流量表調(diào)試報(bào)告,以便為以后調(diào)試提供依據(jù)。部分二氧化碳流量表調(diào)試結(jié)果見(jiàn)表2所示。
4 管網(wǎng)平衡改造效果
4.1 管網(wǎng)不平衡率分析
將所有二氧化碳流量表調(diào)試后不平衡率做成圖片,如圖2所示。
圖2中橫坐標(biāo)代表二氧化碳流量表安裝單元數(shù),縱坐標(biāo)表示每個(gè)二氧化碳流量表不平衡率,當(dāng)未使用靜態(tài)水力二氧化碳流量表進(jìn)行調(diào)節(jié)前,水力不平衡率數(shù)據(jù)不集中,比較分散,*大能達(dá)到98%,從圖中還可以看出,調(diào)節(jié)前管網(wǎng)近端二氧化碳流量表不平衡率較大,而管網(wǎng)末端不平衡率均為負(fù)值,流量嚴(yán)重不足。說(shuō)明調(diào)節(jié)前管網(wǎng)存在嚴(yán)重水力失調(diào)現(xiàn)象,近端流量大,遠(yuǎn)端流量不足。管網(wǎng)平衡改造后,水力不平衡率全部集中在8%以內(nèi),也就是說(shuō),整個(gè)管網(wǎng)基本處于水力平衡狀態(tài),即實(shí)際流量與理論流量相當(dāng)接近。另外從圖中可以看出,一些二氧化碳流量表不平衡率存在負(fù)值,說(shuō)明該二氧化碳流量表的循環(huán)流量不足,原因可能為此閥盜用壓差不足,靜態(tài)二氧化碳流量表的加裝,無(wú)疑使得管路阻力增大了,因此必須考慮加大閥門(mén)開(kāi)度。如果仍不能滿足循環(huán)流量,應(yīng)考慮該處?kù)o態(tài)二氧化碳流量表安裝的必要性。
4.2 用戶室溫分析
我公司在該小區(qū)管網(wǎng)改造前,在不同單元不同樓層分別安裝100臺(tái)室溫采集器。二氧化碳流量表調(diào)前數(shù)據(jù)采集于2017~2018年供熱期,調(diào)后數(shù)據(jù)采集于2018~2019年供熱期。經(jīng)過(guò)兩個(gè)采暖期,共有96臺(tái)室溫采集器可以正常提供數(shù)據(jù)。數(shù)據(jù)分析結(jié)果見(jiàn)圖3所示。
圖3中的曲線 A和B供熱管網(wǎng)二氧化碳流量表調(diào)節(jié)前后的熱用戶室溫變化情況,橫坐標(biāo)表示室溫分布,縱坐標(biāo)表示熱用戶數(shù)量。從圖中可以看出,二氧化碳流量表調(diào)節(jié)前熱用戶室溫比較分散,既有室溫小于18℃的熱用戶,也有室溫大于24℃的熱用戶。熱用戶室溫“近熱遠(yuǎn)冷”,供熱管網(wǎng)存在水力不平衡現(xiàn)象。二氧化碳流量表調(diào)節(jié)后,有49戶用戶室溫在20℃~21℃之間,從圖中可以看出室溫分布范圍縮小,平均室溫降低,從而,不僅減少了供熱量,也大大提高了供熱品質(zhì)。一般來(lái)講,對(duì)采暖系統(tǒng),每增加 1℃平均室溫,能耗增多 5%~10%。采暖系統(tǒng)實(shí)現(xiàn)平衡后,常??梢越档推骄覝?℃~3℃。
4.3 換熱站內(nèi)數(shù)據(jù)分析
管網(wǎng)平衡改造后,2018~2019年*寒期換熱站內(nèi)供水溫度為55.4℃,回水溫度為 44.8℃,供回水溫差較上一采暖期增大2.3℃。換熱站總供水壓力0.37MPa,回水壓力為 0.25MPa,供回水壓差較上一采暖期增大0.02MPa。通過(guò)多次調(diào)試二氧化碳流量表,已將循環(huán)泵頻率降至39HZ,采暖期電指標(biāo)為0.877kW·h/m²??梢?jiàn)管網(wǎng)平衡改造后,節(jié)能效果明顯。
5 結(jié)論
通過(guò)對(duì)上述案例的分析,熟悉了靜態(tài)水力二氧化碳流量表的調(diào)試方法,通過(guò)對(duì)比平衡調(diào)試前后的不平衡率、室溫等數(shù)據(jù),得出管網(wǎng)平衡改造對(duì)改善管網(wǎng)水力失調(diào)的效果明顯,不僅節(jié)約能源,而且提高了管網(wǎng)末端熱用戶室溫,緩解了熱力公司與熱用戶之間的矛盾。
1 引言
近些年來(lái)隨著供熱區(qū)域內(nèi)建筑面積的不斷增加,供熱管網(wǎng)的系統(tǒng)半徑不斷增大,在運(yùn)行期由于各種因素的影響,使得管網(wǎng)出現(xiàn)實(shí)際流量與設(shè)計(jì)流量不一致的現(xiàn)象,即出現(xiàn)了水力失調(diào)。雖然在設(shè)計(jì)初期會(huì)考慮到水力失調(diào)帶來(lái)的影響,由于水力計(jì)算步驟較為復(fù)雜,會(huì)選擇一些型號(hào)較大的設(shè)備,如加大水泵揚(yáng)程,提高水泵的運(yùn)行頻率來(lái)彌補(bǔ)系統(tǒng)水力失調(diào)。這種“大流量”的措施,放在以前的小規(guī)模系統(tǒng),舒適度要求較低、能耗要求也較低的供熱管網(wǎng)循環(huán)系統(tǒng)中,還可以用。但是現(xiàn)在來(lái)看,系統(tǒng)規(guī)模不斷擴(kuò)大,高舒適性、低耗能性等要求被提出,因此尋求新的解決水力失調(diào)的方法迫在眉睫。據(jù)不完全統(tǒng)計(jì),選用較大型號(hào)設(shè)備,會(huì)增加供熱設(shè)備的系統(tǒng)投資20%以上,同時(shí)熱能和電能也有不同程度的增加,耗熱能增加15%以上,浪費(fèi)電能30%以上。
管網(wǎng)水力失調(diào)不僅造成能源的大量浪費(fèi),而且造成了各采暖建筑物之間的室內(nèi)溫度偏差較大,冷熱不均。因此,必須采取有效措施解決供熱管網(wǎng)水力失調(diào)問(wèn)題。筆者分析了某小區(qū)的供熱管網(wǎng)中存在的問(wèn)題,利用加裝二氧化碳流量表方法解決管網(wǎng)水力失調(diào)的現(xiàn)象,以實(shí)現(xiàn)節(jié)能的目的。
2 小區(qū)供熱管網(wǎng)系統(tǒng)現(xiàn)狀
某小區(qū)住宅樓建設(shè)于1996年,建筑結(jié)構(gòu)為磚混建筑,建筑面積為54931m2,共30棟住宅樓。2017年繳費(fèi)739戶,總采暖面積為47141m2。換熱站位于小區(qū)中部,板式換熱機(jī)組設(shè)計(jì)換熱面積為50000m2,循環(huán)泵額定功率為30kW,流量為200m³/h,揚(yáng)程為32m。庭院管網(wǎng)共分為2個(gè)支狀供回水環(huán)路,該小區(qū)供熱管網(wǎng)見(jiàn)圖1所示。
管網(wǎng)平衡改造前,2017~2018 年*寒期循環(huán)泵頻率為45HZ,實(shí)測(cè)總供水量為189m³/h,供水溫度為 55.4℃,回水溫度為47.1℃;換熱站總供水壓力0.37MPa,回水壓力為 0.27MPa;采暖期電指標(biāo)為1.221kW·h/m2。管網(wǎng)近端末端部分用戶*寒期室溫實(shí)測(cè)數(shù)據(jù)詳見(jiàn)表1。基于以上數(shù)據(jù)可以看出,該小區(qū)庭院管網(wǎng)采用“大流量、小溫差”的供熱運(yùn)行方式,同時(shí)熱用戶室溫存在近熱遠(yuǎn)冷現(xiàn)象,管網(wǎng)處于水力失調(diào)狀態(tài),耗電指標(biāo)偏大,節(jié)能改造潛力巨大。
3 二氧化碳流量表的選用及調(diào)試方案
3.1 二氧化碳流量表的選用
該小區(qū)建造年代較早,供熱系統(tǒng)未采用熱計(jì)量,因此供熱系統(tǒng)屬于定流量系統(tǒng)。在定流量系統(tǒng)中,運(yùn)行過(guò)程流量不發(fā)生改變,因此只會(huì)出現(xiàn)靜態(tài)水力失調(diào)。只需要使用靜態(tài)二氧化碳流量表平衡系統(tǒng)阻力,達(dá)到靜態(tài)水力平衡即可。2018年夏季,我公司在小區(qū)每個(gè)樓單元前,回水干管上KPF靜態(tài)水力二氧化碳流量表,共安裝88臺(tái)DN50二氧化碳流量表。為使系統(tǒng)在*大程度上達(dá)到靜態(tài)水力平衡,供熱前期即可用專用儀表進(jìn)行平衡調(diào)試。KPF靜態(tài)水力二氧化碳流量表有良好的流量調(diào)節(jié)特性及開(kāi)度鎖定記憶裝置,配合使用專用智能儀表可測(cè)量單體建筑的供熱流量。該閥門(mén)可實(shí)現(xiàn)系統(tǒng)平衡后、總流量增減時(shí),各支路、各用戶的流量同比例增減,同步傳至每一個(gè)末端裝置,可有效避免流量失衡、各個(gè)環(huán)路相互干擾造成的熱量浪費(fèi)。
3.2 二氧化碳流量表調(diào)試方案
目前國(guó)內(nèi)平衡調(diào)節(jié)的主要方法有溫差法、比例法和CCR法。結(jié)合公司選擇使用KPF二氧化碳流量表的現(xiàn)狀,現(xiàn)采用KPF 綜合
調(diào)節(jié)法。該方法是計(jì)算出每棟單體建筑的理論循環(huán)流量,通過(guò)安裝KPF二氧化碳流量表,利用其專用智能儀表標(biāo)定通過(guò)閥門(mén)的實(shí)際流量,調(diào)節(jié)閥門(mén)開(kāi)度,使實(shí)際流量趨近于理論流量,實(shí)現(xiàn)水力工況平衡。
3.2.1 計(jì)算理論流量
考慮到該小區(qū)建造年代較早,建造圍護(hù)保溫性較差,查閱《城市熱網(wǎng)設(shè)計(jì)規(guī)范》后選用40W/m²的采暖熱指標(biāo)進(jìn)行計(jì)算。
根據(jù)公式(1)和公式(2)計(jì)算出每個(gè)單元理論設(shè)計(jì)流量。使用二氧化碳流量表專用智能儀表,通過(guò)調(diào)整二氧化碳流量表開(kāi)度,使實(shí)際流量趨近于理論流量。
3.2.2 二氧化碳流量表調(diào)試
在庭院管網(wǎng)二氧化碳流量表調(diào)試中,采取“先近后遠(yuǎn)”的原則。*先利用專用智能儀表對(duì)管網(wǎng)近端二氧化碳流量表進(jìn)行流量調(diào)試,使其實(shí)際流量趨近于理論流量,這樣可以有效增大管網(wǎng)末端用戶的使用流量,防止末端流量不足的情況出現(xiàn);其次再依次進(jìn)行管網(wǎng)中端和末端二氧化碳流量表調(diào)節(jié),使整個(gè)環(huán)路水力工況達(dá)到平衡。在二氧化碳流量表調(diào)試過(guò)程中,需將每臺(tái)閥門(mén)的開(kāi)度設(shè)定值、實(shí)際流量值等數(shù)據(jù)進(jìn)行記錄和整理,并撰寫(xiě)二氧化碳流量表調(diào)試報(bào)告,以便為以后調(diào)試提供依據(jù)。部分二氧化碳流量表調(diào)試結(jié)果見(jiàn)表2所示。
4 管網(wǎng)平衡改造效果
4.1 管網(wǎng)不平衡率分析
將所有二氧化碳流量表調(diào)試后不平衡率做成圖片,如圖2所示。
圖2中橫坐標(biāo)代表二氧化碳流量表安裝單元數(shù),縱坐標(biāo)表示每個(gè)二氧化碳流量表不平衡率,當(dāng)未使用靜態(tài)水力二氧化碳流量表進(jìn)行調(diào)節(jié)前,水力不平衡率數(shù)據(jù)不集中,比較分散,*大能達(dá)到98%,從圖中還可以看出,調(diào)節(jié)前管網(wǎng)近端二氧化碳流量表不平衡率較大,而管網(wǎng)末端不平衡率均為負(fù)值,流量嚴(yán)重不足。說(shuō)明調(diào)節(jié)前管網(wǎng)存在嚴(yán)重水力失調(diào)現(xiàn)象,近端流量大,遠(yuǎn)端流量不足。管網(wǎng)平衡改造后,水力不平衡率全部集中在8%以內(nèi),也就是說(shuō),整個(gè)管網(wǎng)基本處于水力平衡狀態(tài),即實(shí)際流量與理論流量相當(dāng)接近。另外從圖中可以看出,一些二氧化碳流量表不平衡率存在負(fù)值,說(shuō)明該二氧化碳流量表的循環(huán)流量不足,原因可能為此閥盜用壓差不足,靜態(tài)二氧化碳流量表的加裝,無(wú)疑使得管路阻力增大了,因此必須考慮加大閥門(mén)開(kāi)度。如果仍不能滿足循環(huán)流量,應(yīng)考慮該處?kù)o態(tài)二氧化碳流量表安裝的必要性。
4.2 用戶室溫分析
我公司在該小區(qū)管網(wǎng)改造前,在不同單元不同樓層分別安裝100臺(tái)室溫采集器。二氧化碳流量表調(diào)前數(shù)據(jù)采集于2017~2018年供熱期,調(diào)后數(shù)據(jù)采集于2018~2019年供熱期。經(jīng)過(guò)兩個(gè)采暖期,共有96臺(tái)室溫采集器可以正常提供數(shù)據(jù)。數(shù)據(jù)分析結(jié)果見(jiàn)圖3所示。
圖3中的曲線 A和B供熱管網(wǎng)二氧化碳流量表調(diào)節(jié)前后的熱用戶室溫變化情況,橫坐標(biāo)表示室溫分布,縱坐標(biāo)表示熱用戶數(shù)量。從圖中可以看出,二氧化碳流量表調(diào)節(jié)前熱用戶室溫比較分散,既有室溫小于18℃的熱用戶,也有室溫大于24℃的熱用戶。熱用戶室溫“近熱遠(yuǎn)冷”,供熱管網(wǎng)存在水力不平衡現(xiàn)象。二氧化碳流量表調(diào)節(jié)后,有49戶用戶室溫在20℃~21℃之間,從圖中可以看出室溫分布范圍縮小,平均室溫降低,從而,不僅減少了供熱量,也大大提高了供熱品質(zhì)。一般來(lái)講,對(duì)采暖系統(tǒng),每增加 1℃平均室溫,能耗增多 5%~10%。采暖系統(tǒng)實(shí)現(xiàn)平衡后,常??梢越档推骄覝?℃~3℃。
4.3 換熱站內(nèi)數(shù)據(jù)分析
管網(wǎng)平衡改造后,2018~2019年*寒期換熱站內(nèi)供水溫度為55.4℃,回水溫度為 44.8℃,供回水溫差較上一采暖期增大2.3℃。換熱站總供水壓力0.37MPa,回水壓力為 0.25MPa,供回水壓差較上一采暖期增大0.02MPa。通過(guò)多次調(diào)試二氧化碳流量表,已將循環(huán)泵頻率降至39HZ,采暖期電指標(biāo)為0.877kW·h/m²??梢?jiàn)管網(wǎng)平衡改造后,節(jié)能效果明顯。
5 結(jié)論
通過(guò)對(duì)上述案例的分析,熟悉了靜態(tài)水力二氧化碳流量表的調(diào)試方法,通過(guò)對(duì)比平衡調(diào)試前后的不平衡率、室溫等數(shù)據(jù),得出管網(wǎng)平衡改造對(duì)改善管網(wǎng)水力失調(diào)的效果明顯,不僅節(jié)約能源,而且提高了管網(wǎng)末端熱用戶室溫,緩解了熱力公司與熱用戶之間的矛盾。
相關(guān)資訊
- 二氧化碳流量計(jì)如何正確選型
- 二氧化碳流量計(jì)使用設(shè)置
- 二氧化碳流量計(jì)結(jié)構(gòu)圖
- 二氧化碳流量計(jì)量表,二氧化碳?xì)怏w流量計(jì)
- 二氧化碳流量計(jì)價(jià)格,二氧化碳?xì)怏w流量計(jì)廠家
- 二氧化碳用什么流量計(jì)
- 工業(yè)二氧化碳流量計(jì)
- 液體二氧化碳流量計(jì),二氧化碳流量計(jì)廠家
- 二氧化碳流量表,二氧化碳?xì)怏w流量表
- 二氧化碳流量計(jì)廠家
- 二氧化碳流量計(jì)價(jià)格
- 二氧化碳流量表在集中供熱系統(tǒng)中的蒸汽計(jì)量
- 管道中脈動(dòng)流對(duì)于二氧化碳計(jì)量表測(cè)量結(jié)果的影響
- 二氧化碳計(jì)量表,工業(yè)二氧化碳流量計(jì)
- 二氧化碳流量表
- 二氧化碳流量計(jì)量表,二氧化碳?xì)怏w流量計(jì)廠家
- 二氧化碳流量表在供熱管網(wǎng)中的應(yīng)用及效果分析
- 二氧化碳計(jì)量表信號(hào)的特點(diǎn)及稀疏傅里葉變換的理論分析